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The genomic era has brought to a great advance in 
our understanding of the molecular basis of diseases. 
Genome wide association studies (GWAS) has provided 
a comprehensive map of genetic susceptibility to some 
complex diseases [1, 2]. However, only a minority of 
diseases are associated with single nucleotide mutations, 
deletions, amplifications or polymorphisms. Recently, 
results of GWAS studies on many cancer types have 
been published and forthcoming, for example pancreas,  
gastric, prostate, breast, colon, and acute lymphoblastic 
leukemia [3-8].

Field defect concept
Different interpretations were proposed to explain 

the ineffectiveness of GWAS in many diseases, including 
untested rare variants, and gene-gene and gene–
environment interactions [9]. One explanation was 
based on the epigenetic theory, which hypothesized 
that the epigenome is an interface between genome and 
environment to adjust the phenotype. The epigenetic 
code includes both methylation at cytosine in CpG site of 
DNA and covalent modifications of chromatin-associated 
proteins with regulatory properties on gene transcription 
[10]. In pathology, the theory of the field defect assumes 
that a local modification occurring in a tissue may 
anticipate the onset of a pathological condition, having 
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potentially a causative role. The epigenetic marks meet 
the concept of field: they persist during the development 
of a cell type; if transmitted to offspring, they contribute to 
the generation of the wide range of different phenotypes 
and epigenomes with same genotype [11]. Epigenetic 
map can evolve during cell lifetime and influence the 
expression of the genome. Thus, the epigenetic changes 
transferred to daughter cells may potentially determine 
the inception of a silent field defect, even in the absence 
of cytological abnormalities.

Epigenome-wide association studies in  
diseases

Epigenome-wide association studies (EWAS) hold 
promise for the detection of new regulatory mechanisms 
that may be susceptible to modification by environmental 
and lifestyle factors affecting proneness to disease. One 
hundred and eleven different primary cells were profiled 
for histone modification patterns, DNA accessibility, DNA 
methylation and RNA expression, providing references 
resource for interpreting the molecular basis of human 
diseases [11]. Global epigenetic patterns were used to 
identify risk factor in exogenous factors as smoking, 
diet, medication, senescence, endogenous factors as 
senescence, and pathological factors as inflammation, 
arthritis, autoimmune diseases, chronic diseases and 
other types of diseases [12].

Interplay between genetics and epigenetics
The exogenous and endogenous agents able to induce 

epigenetic and genetic damages have been demonstrated 
to be major causes of diseases and cancer [13]. The 
epigenetic changes have gathered much attention as 
a pivotal player in aging, tissue atrophy, age-related 
neurodegenerative disorders, such as Alzheimer’s 
disease, Parkinson’s disease, Huntington’s disease, as 
well as in autoimmune diseases [14]. In this contexts, the 
epigenome could mediate interactions between genetic 
and environmental risk factors, or directly interact with 
pathological factors. Autoimmune diseases as systemic 
lupus erythematosus (SLE) and rheumatoid arthritis, 
unrelated to date with mutations in the DNA methylation 
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machinery, showed epigenetic disorder characterized by 
global hypomethylation and local hypermethylation in 
the promoter of some genes. The mechanism responsible 
for the widespread hypomethylation involved the loss of 
DNMT1 expression [15]. It is come to attention the role 
of genetic variability in determining epigenetic profiles 
[16, 17]. The interplay between genetics and epigenetic 
aspects is a key goal for the comprehension of aetiology 
of diseases.

Field defect in cancer
Epigenome-wide association studies (EWAS) were 

performed in various cancer types mainly by comparing 
cancer tissues with adjacent tumor-free tissue [18]. 
However, cancerous organs may exhibit epigenetic 
changes even in regions with histologically normal tissue, 
making organ tissue from healthy control subjects a 
preferable choice for epigenetic studies [19, 20]. A frequent 
early alteration found in normal tissue adjacent to cancer 
is the expression deficiency of proteins involved in DNA 
repair (mutator phenotype). This type of abnormality is 
a prototypical field defect, as it predisposes normal cells 
to accumulate secondary genetic and epigenetic changes 
and finally to become genetically unstable. For example, 
methylation of MGMT, a gatekeeper DNA repair enzyme 
that removes mutagenic and cytotoxic adducts from the 
O6-guanine in DNA, was found in several sporadic cancer 
types and also in normal tissues adjacent and far to cancer 
sites in the same tissues [21, 22]. 

Epigenetic mechanisms promote the switch among 
transcriptional variants expressed at gene loci [23–26]. 
The expression switch from isoform M1 of the PKM2 
(pyruvate kinase) gene to the isoform M2 in glioblastoma, 
a mediator of the Warburg effect in tumor, correlated 
with hypomethylation of M2 promoter [23].

Epigenetic origins of the field defect in  
cancer

The actual models of cancer onset predict that pro-
tumorigenic mutations unable to produce morphological 
change can predispose to cancer formation. It is 
thought that genome wide hypomethylation and local 
hypermethylation in the CpG islands of specific gene 
promoters precede the cell transformation process 
towards a neoplasia and accumulation of genetic 
alterations [27, 28]. 

Several studies have identified genetic and epigenetic 
alterations in apparently normal mucosa of colorectal 
cancer patients [20, 27, 29]. The synchronous colorectal 
carcinomas provide a model to study the contribution of 
epigenetic mechanisms to field cancerization [30]. LINE-
1 hypomethylation in non-cancerous colonic mucosa 
demonstrated to be an epigenetic predictive biomarker for 
multiple colorectal cancer risk. Later, it was demonstrated 
that at least a proportion of sporadic colorectal cancers 
displays a CpG island methylator phenotype (CIMP) 

[31]. However, this unique methylation phenotype plays 
a role in different cancer types. CIMP-positive tumors 
exhibit common molecular and clinicopathological 
characteristics, suggesting that CIMP represents a 
distinct cross-cancer carcinogenic pathway [32].	

External signals and the microenvironment can 
perturb cell homeostasis by inducing epigenome changes 
and a field defect predisposing to diseases. Ultraviolet 
light exposure demonstrated to be etiopathological agent 
of premalignant and malignant skin cancer formation. 
UVA light exposure induces radical oxygen species and 
the activation of several signal cascades, as increased 
AP-1 and matrix metalloproteinase expression, impaired 
TGF-beta signaling, enhanced collagen degradation, and 
decreased collagen synthesis [33]. In addition, oxidative 
damages lead to recruitment of DNMT1 and DNMT3B 
protein to damaged sites and hypermethylation of 
selected CG-rich promoters [34, 35] A significant 
advance in the comprehension of skin cancerization was 
provided by studies on an animal model lacking the CSL 
gene, a component of the Notch signaling pathway, in 
mesenchymal cells [36]. In this model, dermal atrophy 
and inflammation were precursor lesions anticipating 
cell transformation to skin cancer activated by UVA 
treatment. In human fibroblasts, the loss of Notch2 due 
to hypermethylation at atrophic and inflamed skin areas 
duplicated the phenotype CSL-null [36]. These data 
suggest that a field of cancerization can emerge by defects 
of the cell-to-cell interactions mediated by epigenetic 
changes which alter the Notch signaling pathway.

Epigenetic complexity and perspectives
The results of the work of Kaz et al. 2014 [27] 

and Subramaniam et al. 2014 [20] on colon cancer 
open further levels of complexity for the definition of 
epigenetic field defect. In fact, the spread of methylation 
varied according with the anatomical location of the 
sampling and the distance from cancer location. These 
evidences suggest that a more precise comprehension of 
the pathogenetic role of epigenetic mechanisms in cancer 
onset requires longitudinal studies able to depict step by 
step the cancerization of specific districts of a tissue.

A field defect mediated by epigenetic changes 
can arise in any cell type, promoting degeneration 
and cancerization. We are in the phase of learning 
how aberrant placement of the epigenetic marks and 
alterations of the epigenetic machinery are involved in 
diseases. A comprehensive understanding of epigenetic 
mechanisms, their interactions, and the interplay of 
epigenetic and genetic studies, in health and disease 
represent a priority in the biomedical research.

Keywords: Epigenetic field defect, Cancer, Genetic 
damages, Autoimmune diseases
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